# लघुत्तम महत्तम समापवर्त्य: LCM HCF Short Tricks In Hindi शार्ट ट्रिक Score 100%

```लघुत्तम समापवर्त्य विधि एवं महत्तम समापवर्त्य विधि शार्ट ट्रिक
Mastering LCM and HCF
Unlocking Short Tricks for Quick and Efficient Calculations```

## LCM HCF Short Tricks | Methods of Solving LCM and HCF Problems

In this post we are going to share some most important short tricks of LCM and HCF questions. We are also share short tricks in Hindi as well as in English language. These short tricks is very halpful for those candidates who are participating into various state and national level competitive exam.

### LCM of Power and Base

लघुत्तम समापवर्त्य विधि

LCM Trick -1  formula for hcf

If the base of given digit is same and power is not same or different,then LCM will be of the maximum power of the number.

#### LCM Trick-2formula for lcm

If the power and exponent are not same or different, then its LCM will get by factorization method.
hcf and lcm formula

## Prime Factorization Method: hcf and lcm formula

Process :-

1.    Firstly show the given digits into indivisible multiplication.
2. Select the indivisible multiplication with the biggest base, which is inserted in any multiplication digit.
3. Now multiply the selected indivisible multiplication and get the LCM.

EXAMPLE- Find the LCM of 18,28,108 & 105.

Solution:- Here,   18 = 2 x 3 x 3 = 2 x 3^2

28 = 2 x 2 x 7 = 2^2 x 7

108 = 2 x 2 x 3 x 3 x 3 = 2^2 x 3^3

and   105 = 3 x 5 x 7

Requried LCM  = 2^2 x 3^3 x 5 x 7

= 4 x 27 x 5 x 7

= 3780    Ans

Note:- Here, The biggest base number of 2 & 3 is 2^2 & 3^3 , and second indivisible multiplications are 5 & 7.

### >> Maths Short Tricks in Hindi  <<

Division method for LCM: lcm and hcf formula and tricks

Process:-

1.        Arrange the given digit in a row and divide it by 2,3,5,7,11 etc. from this the least number which is divisible should be taken and that number should be divisible by at least two digits of the given numbers
2.             After that write the remaining quotient and numbers which are not totally divided in next row.
3.  Repeat the first step again and again. It is possible that we have to repeat any process.
4.    By multiplying all the divisor we will get the required LCM.

Example:     Find the LCM of 36 , 60 , 84 & 90 .

### LCM of decimal : lcm and hcf formula and tricks

Process:-

To find out the LCM of given decimal digit , find out the LCM of hole relative digit, then drop the decimal from the right side of the digit as it was earlier in the digit.

Example: find out the LCM of  2.4 , 0.36 & 0.045 .

Note:- here in 2.4 there is one number after the decimal because of this in LCM 360 decimal is dropped from the right side before 0.

LCM of Fractions : formula for lcm

FORMULA:

Example: Find out the LCM of  1/3 , 2/9 , 5/6 & 4/27

H.C.F. महत्तम समापवर्त्य विधि

HCF of power and base

#### HCF Trick -1  formula for hcf

If the base of given digit is same and power is not same or different, then HCF will be of the maximum power of a number.

Example: Find the HCF of 2^8 , 2^10 and 2^15

HCF Trick-2 formula for hcf

If the power and exponent both are different, then its HCF will get by factorization method

Example 1 : Find out the HCF of 5^2 & 4^3.

Example 2 : Find out the HCF of 2^-2 , 4^-3 & 6^-2.

Prime factorization method for HCF

Process:-

1.       Firstly show the given digits into indivisible fractions.
2.       The fractions which are present in all digit, the product of that fractions will be required HCF.

Example: Find HCF of 28 & 32.

### Continued Division Method for HCF: LCM HCF Short Tricks

Process:-

1.       From the given digits firstly divide bigger number by smaller number.
2.      Then from the reminder divide it by divisor, hence we get next divisor.
3.      Repeat this process till reminder will be zero.
4.      So that the last divisor will be required HCF.

Example:      find the HCF of 493 and 928.

## Method for finding HCF of 3 or more digit by division method: LCM HCF Short Tricks

Process:-

1.       Firstly find out the HCF of any two numbers by continuous division method.
2.     Then find HCF from that HCF which we get by the first step and remaining of given digit.
3.             Repeat this process with all remaining digits.
4.      At last, the HCF we get will be the required HCF.

Example: Find the HCF of 828 , 1311 & 1955.

HCF of decimals

Process:-

To find out the HCF of given decimal digit , find out the HCF of hole relative digit, then drop the decimal from the right side of the digit as it was earlier in the digit.

Example: Find out the HCF of 1.5 , 0.24 & 0.036.

HCF of fraction

FORMULA:-

Example:  Find out the HCF of 16/21 , 8/15 , 2/3 & 24/27

>